Editorial

Pediatric and adolescent multidisciplinary diabetes team care

The article by Goss et al. (1) in this issue of the journal highlights what many of us in the field of pediatric and adolescent diabetes – even adult diabetes – think we have known for some time. A multidisciplinary team approach where all the professional team members practice with the same philosophy of care and in which targeted improvement of glycemia occurs must include improved self-blood glucose monitoring and education on how to use such monitoring results. It must also include attention to identify the philosophy of care and treatment goals in addition to specific and dedicated attention to psychosocial factors (2). Family cohesion, depression and substance abuse, self-esteem, and behavioral issues as well as learning styles – and even the existence of a coordinated educational process – can be positive or negative factors when living with a chronic disease such as diabetes mellitus. These psychosocial factors could also include personal or societal financial barriers such as those discussed in the rural Australian setting in this paper. There may also be financial or other barriers in inner cities around the world where poverty, levels of family education, or even neighborhood safety issues interfere with getting to clinic, being able to read and communicate with healthcare providers, or having access to physical activity. Other barriers to health care include disorganization of care, the lack of a cohesive treatment philosophy, or lack of any targeted glycemia goal at all. In some parts of the world, in rich and poor countries alike, the lack of resources for basic monitoring or even insulin are the barriers to be overcome. In others where specific financial or institutional resources are not lacking, inattention to family issues, alcohol or drug use, attention-deficit disorders or learning differences as well as concomitant co-morbidities such as other illnesses like celiac disease may constitute barriers to improved glycemia.

Goss et al. are to be congratulated for defining a problem in rural Australia and creating their own solution. It just goes to show what dedication can achieve when coupled with interest in becoming knowledgeable and self-taught. The results are even more impressive because they did not start with an already trained pediatric or adolescent diabetologist but ‘just’ an interested pediatrician consultant. But this is not ‘just’ a consultant, this is a physician who learned the key concepts about controlling glucose levels with the only dogma being the importance of involving patients and families, involving a team of professionals and offering these services in a manner that would facilitate cooperation and improvement. Unifying this approach to treatment in order to improve education (3) and glycemic outcome was a goal they identified and this is verified in the reports of the Hvidore ongoing study (4). Although the Hvidore centers continue to show significant center-to-center differences in outcome (5), analysis of why this may be so, and why there has been no significant improvement in A1c levels over time has been somewhat controversial. Even when such centers were identified as being average (the yellow centers) but not ‘the best’ (the green centers) or ‘significantly worse’ than others (the red centers), most of us would expect there to be great internal or external pressure to improve upon an individual center’s A1c results for the general benefit of patients or out of sheer competitiveness. But this has not been the case with the Hvidore center cohort.

In this rural Australian cohort, the authors correctly identified a problem of poor care provision, identified some possible explanations, and sought to make process corrections to ameliorate the problem. They succeeded! This was by no means a perfect solution for them because the A1c levels still remained too high. But, they did achieve significantly lower A1c levels than when they first started, and significantly improved A1c year by year over the 4-yr time span of their report. Quality of life improved. Patient satisfaction improved. Ease of access to all disciplines of educators – medical, nursing, dietary, and psychosocial – also improved and actually was utilized by the vast majority of the patients and their families. Further scientific studies could occur if other researchers were to utilize this same approach and might include validated studies of self-efficacy (6), family cohesion (7) and functioning, and additional quality of life measures (8) besides their own quality
Editorial

of life scale. The authors are absolutely correct that their reported improvement has broad implications for short-term and long-term reduction not only in cost of care but also in all the well-known complications associated with type 1 diabetes mellitus in children and adolescents (9–14).

To assemble a dedicated team that talks and works together may sound easy. It took those of us involved with writing the protocols for the now famous Diabetes Control and Complications Trial (DCCT) a year to define our tasks. When the DCCT ‘proved’ conclusively the benefit of targets for glycemia, we valued even more greatly the dedication of our excellent teams (15). In some cases, the physicians were the main movers in helping patients succeed in reaching DCCT goals. In many other cases, the nurse educators or dietitians were the key to these successes. In most centers, the team approach clearly identified different aspects of care that previously had been taken for granted or not recognized, but patients and their families spoke of the benefits of the team approach that was so important compared to just seeing an individual doctor or nurse – and this comment occurred in all the DCCT centers. Another key benefit of the DCCT was its ability to demonstrate that more frequent – and more consistent – care was also extremely helpful. One of the questions I had when reading this report from Australia was whether there would be any discussions on or possibility to improve glycemic control further, not only with more pump treatment but simply by more frequent care, e.g., team visits every month or every 6 wk rather than quarterly visits for those who were not achieving their defined goals. In our own team practice at NEDEC (New England Diabetes and Endocrinology Center), we offer much more frequent follow-up than the other centers around us (2). Our own A1c results are similar to those of Professor Harry Dorchy in Brussels (16), and we believe that such targeted, individualized care, along with more frequent consultations with all our staff, has resulted in low (7%) A1c values without added severe or frequent hypoglycemia, even within a single-center large patient population of more than 500 subjects. There are many other examples around the world. Philosophy of care, identifying optimal glycemic targets for the individual, working through an empowerment strategy to try to reach such targets safely and without excessive hypoglycemia, can involve multidose insulin regimens, more frequent blood glucose monitoring, teaching about insulin pumps and also about greater flexibility of food and insulin without strict dogmas defining what must be done. Rather, the goals at NEDEC and at so many other successful centers (e.g., the green Hvidore centers) maximize flexibility while simultaneously defining steps of improvement. In reading about our Australian colleagues in their report, I would expect there will be continued lowering of A1c values with their insulin pump program and with their unified and impressive multidisciplinary team approach to such care provision.

After the DCCT was concluded and those of us involved had to decipher some of the DCCT conclusions, I struggled with what the DCCT message was going to be. As I lectured about diabetes around the USA and Canada, and also in eastern Europe, Latin America, the Middle East, Africa, and Asia, the similarities and the problems were much more alike, although there were always individual and unique differences to overcome either in health care systems, supplies, finances, or even societal issues. The obvious need for improvement in A1c levels and lowering of overall glycemia was the important point to be conveyed to my audiences – to challenge them to establish their own goals and to figure out how they might move toward achieving them with their patients. The critically important decreases in retinopathy, nephropathy, and neuropathy were also extremely valuable because they were proved in prospective and randomized fashion. Since then, the follow-up DCCT-EDIC (Epidemiology of Diabetes Intervention and Complication) (11–13) studies have added cardiovascular improvement to the list. Other studies from other centers (15) have confirmed that excess hypoglycemia is not automatically to be expected with improved glucose control. Even when there was more severe hypoglycemia, not a desired outcome, improving glycemia and lowering A1c values was shown to be significantly more important for psychosocial and mental functioning as well (17, 18).

In many other studies, improved A1c was also documented with much less severe hypoglycemia than had been reported in the DCCT centers. Dorchy (16), Pinelli (19), de Beaufort (20) and our own team at NEDEC all have reported successful lowering of A1c values in children and adolescents with type 1 diabetes mellitus utilizing multiple daily injections (MDI) and continuous subcutaneous insulin infusion (CSI) – despite having different insulin strategies and different timing/ types of meals. All have the common goal of maximizing improvement, empowering the patient and his or her family toward optimizing such goals but doing so safely (21). Now the task of the international pediatric diabetes community will be to replicate these results in other centers and not to rest until the lowering of A1c results can be accomplished through adaptation of such multidisciplinary, coordinated, and same philosophy care. Quite a challenge!

Stuart J Brink, MD
Senior Endocrinologist, New England Diabetes and Endocrinology Center (NEDEC), Waltham, MA, USA

Pediatric Diabetes 2010; 11: 289–291
Clinical Professor of Pediatrics, Tufts University
School of Medicine, Boston, MA, USA
Immediate Past President, International Society of
Pediatric and Adolescent Diabetes (ISPAD) and ISPAD International
Education Liaison Chairperson
e-mail: Stubrink@aol.com

References

1. Goss PW, Paterson MA, Renalson J. A ‘radical’
new rural model for pediatric diabetes care. Pediatric
2. Brink SJ, Miller M and Moltz KC. Education and
multidisciplinary team care concepts for pediatric and
adolescent diabetes mellitus. J Pediatr Endocrin Metab
3. Brink S, Simmer R, Hinzen-Hentzen D, Deeb LC,
Daly AS, Anderson BJ, Agrin RJ. Diabetes Educa-
tion Goals. Alexandria, VA, USA: American Diabetes
4. Mortensen H, Robertson K, Haugeard P, and the
Hvidøre Study Group on Childhood Diabetes. Insulin
management and metabolic control of type 1 diabetes
mellitus in childhood and adolescence in 18 countries.
5. Danne T, Mortensen HB, Haugeard P, Lynggard H,
Aanstoot H-J, Chiarelli F, Daneman D, Dorchy H,
Garandeau P, Green SA, Hory H, Holli RW, Kaprio EA,
Kokko M, Martiuk P, Matsunaka N, Robertson KJ,
Schoenle Ej, Sovik O, Swift PGH, Tsou RM, Vanneli M,
Aman J, for the Hvidøre Study Group on Childhood Diabetes. Persistent differences among centers over 3 years in glycemic control and hypoglycemia in a study of 2805 children and adolescents with type 1 diabetes fro the Hvidøre Study Group. Diab Care 2001; 24: 1342–1347.
6. Grosman HI, Brink SJ and Hauser ST. Self-
efficacy in adolescent girls and boys with insulin-
dependent diabetes mellitus. Diabetes Care 1987: 10:
324–329.
7. Newborough JR, Simpkins CG, Maurer H. A family
developmental approach to studying factors in the
management and control of childhood diabetes.
Diabetes Care 1985; 8: 83–92.
8. Edelestein J, Lin MW. Locus of control and the
9. DCCT RESEARCH GROUP. The effect of intensive
treatment of diabetes on the development and
progression of long-term complications in insulin-
dependent diabetes mellitus. The New England Journal
of Medicine 1993; 329: 977–986.
10. DCCT/Epidemiology of Diabetes Interventions and
Complications (EDIC) Research Group. Beneficial
effects of intensive therapy of diabetes during
adolescence: outcomes after the conclusion of diabetes
control and complications trial (DCCT). Pediatrics
11. DCCT/Epidemiology of Diabetes Interventions and
Complications Research Group. Retinopathy and
nephropathy in patients with type 1 diabetes after
12. DCCT/Epidemiology of Diabetes Interventions and
Complications Research Group. Effect of intensive
therapy on the microvascular complications of type
13. Nathan DM, Kowarck PA, Baccaloni J, Genuith
SM, Lachenm J, Orchard TJ, Raskin P, Zimman B,
DCCT/EDIC Research Group. Intensive diabetes
treatment and cardiovascular disease in patients with
type 1 diabetes. The New England Journal of Medicine
14. DCCT RESEARCH GROUP. Lifetime benefits and costs
of intensive therapy as practiced in the DCCT. JAMA
15. Brink SJ. How to apply the Diabetes Control and
Complications Trial experience to children and
16. Dorchy H. Treatment management in type 1 diabetes
(insulin, diet, sport): “Dorchy's recipes.” Revue
Medicale de Bruxelles 2010; 31: S2, S37–S54.
17. Musen G, Jacobson, AM, Ryan, CM, Clary, PA,
Waberski BH, Weinger K, Dahms W, Bayless M,
Silers N, Farth J, White N, DCCT/EDIC Research
Group. Impact of diabetes and its treatment on cognitive
function among adolescents who participated in the
18. Schoenle Ej, Schoenle D, Molinari L, Largo RH.
Impaired intellectual development in children with type
1 diabetes association with HbA1c, age at diagnosis and
Pinelii L. Hypoglycemia in children with type 1 diabetes
20. De Beaupre CE. Hypoglycemia during intensified
insulin therapy of young children. Journal of Pediatric
Endocrinology & Metabolism 1998; 11(Suppl. 1):
153–158.
21. Brink SJ. Insulin treatment and home monitoring for
and Clinical Text, 3rd edn. Philadelphia: Lippincott
Williams & Wilkins, 2004: 683–700.